Maschinelles Lernen
04.10.2021, 17:21 Uhr
Verbesserung der biologischen Bildanalyse
Mit der superauflösenden Mikroskopie gewinnen Wissenschaftlerinnen und Wissenschaftler neue Einblicke in die Welt der Zellen und können nanometerkleine Strukturen im Zellinneren erkunden.
Das Verfahren hat die Lichtmikroskopie revolutioniert und seinen Erfindern 2014 den Nobelpreis für Chemie eingebracht. Tübinger KI-Forscher haben in einem internationalen Projekt einen Algorithmus entwickelt, der diese Technologie wesentlich beschleunigt.
Eine Art der superauflösenden Mikroskopie ist die sogenannte Einzelmolekül-Lokalisationsmikroskopie (single-molecule localisation microscopy, SMLM). Dabei werden die zu erforschenden Strukturen mit fluoreszierenden Molekülen markiert, von denen zu jedem Zeitpunkt nur eine begrenzte Anzahl mit Licht aktiviert wird. Diese lassen sich dann sehr präzise lokalisieren. Mit diesem Trick werden mehrere Bilder einer einzelnen Probe generiert. Diese Rohdaten werden von einem Computerprogramm ausgewertet und zu einem einzigen aussagekräftigen Bild zusammengesetzt. Mit dieser Technik lassen sich viel höhere Auflösungen erreichen als mit der klassischen Lichtmikroskopie. Doch sie hat einen Nachteil: Es braucht eine grosse Menge an Bildern, was das Verfahren sehr zeitaufwändig macht. Das Team von Jakob Macke, Professor für Maschinelles Lernen in der Wissenschaft an der Universität Tübingen, hat in einer internationalen Zusammenarbeit einen neuen Algorithmus entwickelt, der diese Einschränkung der SMLM überwindet.
Der Algorithmus DECODE (DEep COntext DEpendent) basiert auf Deep Learning: Er nutzt ein künstliches neuronales Netz, das durch Trainingsdaten lernt. Statt mit echten Bildern wird das Netz in diesem Fall jedoch mit synthetischen Daten aus Computersimulationen trainiert. Unter Einbeziehung von Informationen über den Aufbau des Mikroskops und der Physik der Bildgebung erzielten die Forschenden Simulationen, die den realen Aufnahmen sehr ähnlich sind.