Was ist Künstliche Intelligenz?

Maschinelles Lernen

Maschinelles Lernen gilt als Kerntechnologie der Künstlichen Intelligenz. Dabei handelt es sich vereinfacht ausgedrückt um die Automatisierung der prädiktiven Analytik. Je mehr Beispiel- beziehungsweise Trainingsdaten das Lernverfahren erhält, desto mehr kann es sein Modell verbessern.
Lernalgorithmen extrahieren aus den zur Verfügung gestellten Daten statistische Regelmässigkeiten und entwickeln daraus Modelle, die auf neue, zuvor noch nicht gesehene Daten reagieren können, indem sie sie in Kategorien einordnen, Vorhersagen oder Vorschläge generieren.
Man unterscheidet drei Arten von Algorithmen für maschinelles Lernen:

Machine Vision

Diese Technologie erfasst und analysiert visuelle Informationen mithilfe einer Kamera, Analog-Digital-Wandlung und digitaler Signalverarbeitung. Das maschinelle Sehen kann so programmiert werden, dass es beispielsweise durch Wände hindurchsieht. Die Anwendungsfelder reichen von der Unterschriftenidentifikation über die Klassifizierung von Produktteilen bis zur medizinischen Bildanalyse.

Natural Language Processing (NLP)

Bei NLP geht es um die Verarbeitung von menschlicher Sprache durch ein Computerprogramm. Eines der bekanntesten Anwendungsbeispiele ist die Spam-Erkennung, bei der die Betreffzeile und der Text einer E-Mail geprüft werden und entschieden wird, ob es sich um Junk handelt. NLP wird hauptsächlich eingesetzt für Textübersetzungen, Stimmungsanalysen und Spracherkennung.

Robotik

Sie beschäftigt sich mit der Konstruktion und Herstellung von Robotern. Sie werden nicht nur in der Produktion oder von der NASA verwendet, um grosse Objekte im Weltraum zu bewegen. Mithilfe von maschinellem Lernen können Roboter auch in sozialen Umgebungen interagieren.
Selbstfahrende Autos: Durch die Kombination von Computer Vision und Bilderkennung können Fahrzeuge automatisiert, ohne den Einfluss eines menschlichen Fahrers, fahren, eine Spur halten, Hindernissen ausweichen und einparken.

Fazit

KI durchdringt in ungeahnter Geschwindigkeit unseren Alltag in Form digitaler Assistenten, kooperativer Roboter, autonomer Fahrzeuge und Drohnen. Big Data und die amerikanischen Internetkonzerne treiben die Entwicklung Künstlicher Intelligenz voran, unterstützt von immer leistungsfähigeren Hard- und Softwareplattformen. Sie sind das Instrumentarium, das Machine Learning benötigt, um grosse Datenmengen verarbeiten zu können, komplexe Zusammenhänge zu erkennen und daraus zu lernen, ohne explizite Programmierung. Es wird nicht mehr lange dauern, bis die ersten smarten, vorausschauenden Systeme sich selbst überwachen, Prognosen liefern und eigenständig Massnahmen vorschlagen oder durchführen. Die Forschung befindet sich noch in den Anfängen, so dass die technologische Optimierung momentan mit einem enormen Mehrwert für die Nutzer und Unternehmen einhergeht.



Das könnte Sie auch interessieren