KI verändert das Payment-Management
KI erkennt Betrug
Betrugserkennung und Inkasso sind derzeit die beiden wichtigsten Anwendungsgebiete von KI im Payment-Umfeld. Ausgangspunkt ist eine unüberschaubare Menge von Daten: Welche Kunden nutzen welche Bezahlverfahren? Was kaufen sie zu welcher Zeit und wie gross sind die Warenkörbe? Wo wohnen diese Kundengruppen, was für Geräte verwenden sie? In welchen sozialen Netzwerken sind sie aktiv?
Werden alle diese Daten gesammelt, miteinander verknüpft und analysiert, lassen sich eindeutige Muster erkennen. Wenn eine anstehende Bezahltransaktion diesem Muster nicht entspricht, weist dies auf einen Betrugsversuch hin. Dabei gilt: Je stärker die Abweichung, desto wahrscheinlicher sind Kriminelle am Werk. Neben den Mustern liefern die Daten die Basis für ein Regelwerk, anhand dessen das Betrugspräventionssystem automatisch entscheidet, ob eine verdächtige Transaktion blockiert wird oder nicht
“KI optimiert die Ziele höhere Realisierungsquoten, Kostenreduktion und Kundenbindung.„
Sebastian Hoop, Geschäftsführer Collect AI
«Im Bereich der Risikoanalyse sorgt maschinelles Lernen als ein Teilbereich der KI bereits heute dafür, dass sich die Auswertungen selbstständig verbessern, indem sie betrügerische Transaktionen der Vergangenheit heranziehen, Risikofaktoren abgleichen und ihre Entscheidungslogiken selbstständig daraufhin anpassen. So werden neue Betrugsstrategien schnell entdeckt und in die Entscheidungsfindung einbezogen», erklärt Ralf Gladis, Geschäftsführer und Gründer des Payment-Service-Providers Computop. Weil die Systeme eigenständig lernen, können sie Betrugsmuster auch dort erkennen, wo zunächst keine Zusammenhänge vermutet werden. Sie sind in der Lage, deutlich flexibler zu reagieren als auf Basis eines starren Regelwerks.
Das wiederum sorgt für mehr Umsatz beim Händler. «Wo die Standardregeln eine Transaktion blockieren würden, erkennt das System anhand von händlerspezifischen Transaktionsprofilen wiederkehrende Muster und lässt mehr gute Transaktionen zu», verdeutlicht Vasyl Ostapchuk, Director Digital Transformation beim Payment-Service-Provider Payone. Seiner Meinung nach müssen die Präventionssysteme immer ausgeklügelter werden - nicht zuletzt weil auch die Betrüger mit KI arbeiten. Sie identifizieren mit gezielten kleinen Angriffen Lücken im bestehenden Regelwerk, um diese dann im grossen Stil auszunutzen. Herkömmliche Regelwerke werden dem absehbar nicht mehr gewachsen sein. «Es wird einen Wettbewerb geben zwischen Betrügern, die KI anwenden, und Unternehmen, die gezwungen sind, sich immer stärker mit dem eigenen KI-Einsatz dagegen zu rüsten», ist Ostapchuk überzeugt.
Damit stossen einzelne Händler bei einer eigenständigen Betrugsprävention an ihre Grenzen. Denn: «Bei KI ist die Datenbasis entscheidend für die Qualität und das Ergebnis. Je mehr Daten eingespeist werden, desto präziser wird sie», betont Mirko Hüllemann, CEO und Gründer des Payment-Service-Providers Heidelpay. Über solch grosse Datenmengen verfügen aber nur einige grosse Händler. Für die meisten Shop-Betreiber dürfte es sinnvoller sein, die Betrugsprävention in die Hände eines externen Dienstleisters zu legen.