Datenbereinigung
26.10.2024, 10:45 Uhr
Praktische Ansätze zur Bereinigung von ML-Datensätzen
Um die Leistung Ihrer Machine-Learning-Modelle zu optimieren, ist eine gründliche Datenbereinigung unerlässlich.
(Quelle: dotnetpro)
Die Qualität der Daten ist das Herzstück erfolgreicher Machine-Learning-Modelle. Wenn Ihre Daten inkonsistent, von Ausreissern durchzogen oder mit fehlenden Werten versehen sind, kann selbst das bestoptimierte Modell nicht die gewünschten Ergebnisse liefern. Ob Sie nun mit unstrukturierten Daten arbeiten, komplexe Pipelines managen oder einfach nur versuchen, eine Vielzahl von Datensätzen zu harmonisieren – ohne saubere Daten sind Ihre ModVergleiche nahezu nutzlos.
Die Frage ist: Warum sind saubere Daten so entscheidend? Der Erfolg Ihres Modells hängt ganz davon ab, wie gut die eingegebenen Daten die reale Welt widerspiegeln. Schlechte Datenqualität verzerrt die Leistungskennzahlen und erschwert einen sinnvollen Vergleich zwischen Modellen über verschiedene Experimente hinweg.
Man kann sich das wie den Test zweier Motoren vorstellen, von denen einer mit kontaminiertem Kraftstoff betrieben wird – ein faires Testen ist so nicht möglich. Eine ordnungsgemässe Reinigung Ihrer Daten gewährleistet, dass Modelle nicht nur akkurat, sondern auch vergleichbar und reproduzierbar sind.
Der Artikel Data Cleaning: 9 Ways to Clean Your ML Datasets stellt neun wesentliche Techniken vor, die ML-Engineers im Jahr 2024 zur Datenbereinigung verwenden. Von der Handhabung fehlender Werte mit KNN-Imputation bis hin zur Verwaltung der Automatisierung grosser Pipelines mit Tools wie Apache Airflow – es werden die praktischen, getesteten Methoden zur Aufrechterhaltung der Datenqualität behandelt. Jeder Schritt hilft sicherzustellen, dass die Ergebnisse wirklich aussagekräftig sind, wenn es darum geht, die Modellleistung zu vergleichen.