Paul Scherrer Institut 15.02.2021, 19:59 Uhr

Neuer Bauplan für stabilere Quantencomputer

PSI-Forschende haben einen Plan vorgelegt, wie sich schnellere und genauere Quantenbits erschaffen liessen. Zentrale Elemente sind dabei magnetische Atome aus der Klasse der sogenannten Seltenen Erden, die in das Kristallgitter eines Materials eingebracht werden.
Manuel Grimm ist theoretischer Physiker am Paul Scherrer Institut und beschäftigt sich mit den Grundlagen, auf denen zukünftige Quantencomputer aufbauen könnten.
(Quelle: Markus Fischer/PSI)
Auf dem Weg zu Quantencomputern sind zunächst sogenannte Quantenbits nötig: Speicher-Bits, die anders als die klassischen Bits nicht nur die binären Werte Null und Eins annehmen können, sondern auch jede beliebige Kombination dieser Zustände. «Damit wird eine ganz neue Art von Berechnung und Datenverarbeitung möglich, die für spezifische Anwendungen eine enorme Beschleunigung der Rechenleistung bedeutet», erklärt der PSI-Forscher Manuel Grimm, Erstautor einer neuen Fachpublikation zum Thema Quantenbits.
In dieser beschreiben die Autoren, wie sich logische Bits und ihre Verknüpfungen zu grundlegenden Rechenoperationen in einem magnetischen Festkörper realisieren liessen: Einzelne Atome aus der Klasse der Seltenen Erden, die in das Kristallgitter einer Trägersubstanz eingebaut wären. Mittels Quantenphysik rechnen die Autoren vor, dass der Kernspin der Seltenen-Erde-Atome als Informationsträger, also als Quantenbit, geeignet wäre.
Sie schlagen weiterhin vor, dass gezielte Laserpulse die entscheidende Information kurzzeitig auf die Ebene der Elektronen des Atoms übertragen und so die Quantenbits aktivieren könnten, was eine weiter reichende Sichtbarkeit der Information für die umgebenden Atome bedeutet. Zwei derart aktivierte Quantenbits kommunizieren miteinander und lassen sich dabei «verschränken».
Verschränkung ist eine besondere Eigenschaft von Systemen mit mehreren Quantenteilchen, die besonders für Quantencomputer essenziell ist: Das Messergebnis eines Quantenbits hängt dann direkt vom Messergebnis anderer Quantenbits ab und umgekehrt.

Schneller bedeutet weniger fehleranfällig

Die Forschenden zeigen auf, wie sich mit diesen Quantenbits logische Gatter der Art «Kontrolliertes NOT-Gate» (Englisch: controlled NOT gate, kurz: CNOT gate) herstellen liessen. Logische Gatter sind die grundlegenden Bausteine, mit denen auch klassische Computer Berechnungen ausführen. Schaltet man genügend solche CNOT-Gatter sowie Einzel-Quantenbit-Gatter zusammen, wird jede erdenkliche Rechenoperation möglich. Sie bilden somit die Basis für Quantencomputer.
Damit ist diese Arbeit zwar nicht die erste, die quantenbasierte logische Gatter vorschlägt. «Unsere Methode, die Quantenbits zu aktivieren und zu verschränken, hat aber gegenüber bisherigen vergleichbaren Vorschlägen einen entscheidenden Vorteil: Sie ist mindestens um den Faktor zehn schneller», so Grimm.
Dabei geht es jedoch nicht nur um die Schnelligkeit, mit der ein darauf aufbauender Quantencomputer rechnen könnte, sondern vor allem um die Fehleranfälligkeit des Systems. «Quantenbits sind nicht sehr stabil. Wenn die Verschränkungsprozesse zu langsam sind, wird es wahrscheinlicher, dass einige der Quantenbits zwischenzeitlich ihre Information verlieren», erklärt Grimm.
Was die PSI-Forschenden also letztlich entdeckt haben, ist eine Möglichkeit, diese Art Quantencomputer nicht nur mindestens zehn Mal so schnell zu machen, sondern zudem um denselben Faktor weniger fehleranfällig als bisherige, vergleichbare Systeme.

Autor(in) pd/ jst



Das könnte Sie auch interessieren